

13-valent pneumococcal conjugate vaccine (PCV13) effects on disease caused by serotype 3

Tamara Pilishvili, PhD, MPH

Advisory Committee on Immunization Practices February 28, 2019

Rationale

- Serotype 3 (ST3) causes most of the remaining PCV13-type disease burden in the US and countries using PCV13
- Evidence on PCV13 effectiveness against ST3 disease not consistent across settings/studies
- Assumptions around PCV13 effects on ST3 disease influence estimates of expected vaccine impact and results of economic analyses

Background

- ST3 pneumococcal strains:
 - Unique genetic, phenotypic, physiologic characteristics associated with invasiveness and disease severity
 - Temporal variations in incidence potentially unrelated to vaccine introduction
- Various mechanisms by which reduced effectiveness against ST3 explained
 - mucoid ST3 capsule was shown to release free polysaccharides (animal model study)¹
 - interferes with antibody-mediated bacterial killing and protection
 - reduced opsonophagocytosis due to increased thickness/density of polysaccharide capsule²

¹Choi et al. Clin Vaccine Immunol. 2016 ²Poolman et al. Vaccine 2009

Serotype specific immune response and effectiveness against IPD¹

	Vaccine effectiveness (95% CI)	Predicted vaccine effectiveness at 0·35 µg/mL ELISA cutoff*	Calculated correlate of protection in µg/ml for ELISA* (95% CI)
PCV13			
1	84% (54 to 95)	96%	0.78 (0.47 to 1.68)
3	26% (-69 to 68)	97%	2·83 (1·16 to ∞)
6A†	98% (64 to 99·8)	90%	0.16 (0.08 to 1.05)
7F	91% (70 to 98)	98%	0.87 (0.40 to 1.80)
19A	67% (33 to 84)	95%	1.00 (0.60 to 2.47)
5		89%	

Key points:

- Estimated threshold of protection was higher for ST3 IPD, compared with other PCV13 types¹
- Thresholds for protection against acquisition of nasopharyngeal carriage are much higher than those for IPD
- No evidence to suggest PCV13 impacts ST3 carriage²
- Therefore, no herd effect from childhood PCV13 programs could be expected

¹Andrews et al. Lancet ID 2014

²Summary of systematic review for WHO SAGE Position paper. February 2019 (<u>https://www.who.int/immunization/documents/positionpapers/en/</u>)

PCV13 effects on IPD caused by serotype 3

- Effectiveness in children
- Population-level impact in children and adults (indirect effects)
- Effectiveness in adults

Effectiveness of PCV13 against ST3 IPD in children

Country	Age group and schedule	VE (95% CI)	
Canada (Deceuninck 2018)	≥1 dose at 2-59 months	20% (-265% to 82%)	
USA (Moore 2016)	>1 dose at 2-59 months	80% (30% to 95%)	
Germany (VanderLinden 2016)	>1 dose at 2-23 months	74% (2% to 93%)	
Germany (Weinberger 2016)	2 doses before 12 months of age and 1 dose at 12 months or later	0% (-791 to 89%)	
UK (Andrews 2014)	>2 doses before 12 months of age and 1 dose at 12 months or later	26% (-69% to 68%)	
Spain (Dominguez 2016)	≥1 doses at 7-59 months of age	26% (-65% to 67%)	

Organisation mondiale de la Santé

Weekly epidemiological record Relevé épidémiologique hebdomadaire

22 FEBRUARY 2019, 94th YEAR / 22 FÉVRIER 2019, 94° ANNÉE No 8, 2019, 94, 85–104 http://www.who.int/wer

- WHO position statement based on systematic review of primary evidence on immunogenicity and effectiveness against IPD, pneumonia, and NP carriage for PCV10 and PCV13 in children
- "Despite immunogenicity data, evidence for a direct or indirect reduction in IPD due to serotype 3 after administration of PCV13 was inconclusive, although most studies showed no effect."
- PCV10 does NOT contain types 3, 19A, and 6A

Product choice Both PCV10 and PCV13 have substantial impacts against pneumonia, vaccine-type IPD and NP carriage...PCV13 may have an additional benefit in settings where disease attributable to serotype 19A or serotype 6C is significant.

PCV13-type IPD rates among children < 5 years old by serotype, 2007 –2017

Changes in serotype 3 IPD incidence, 1998–2017

Children <5 years

Active Bacterial Core Surveillance, CDC unpublished data

PCV13-type IPD rates among adults <a>>65 years old by serotype, 2007 – 2017

Active Bacterial Core Surveillance, CDC unpublished data

Changes in serotype 3 IPD incidence, 1998–2017

Adults ≥65 years

Active Bacterial Core Surveillance, CDC unpublished data

IPD rates among adults <a>>65 years old, July 2007 – June 2017, top serotypes 2015-2017

Active Bacterial Core Surveillance, CDC unpublished data

Cumulative estimated number of PCV13-type IPD cases prevented through administration of PCV13 to adults ≥65 years (direct effects) 8/2014–5/2017

	Observed	Predicted, if no PCV13 use in adults	Cases prevented through PCV13 direct effects			
	(A)	(B)	ABCs cases	US cases		
PCV13-type (+6C) cases	907	924 (860 <i>,</i> 990)	17 (-47, 83)	190 (-470, 870)		
PCV13-type (+6C) cases (excluding type 3)	416	472 (427, 520)	56 (12, 104)	580 (120, 1080)		

(B)-(A): Total number of PCV13-type IPD cases prevented in adults ≥65 years through PCV13 direct effects based on (observed IPD cases) minus (estimated cases in a setting of indirect effects only) Active Bacterial Core Surveillance, CDC unpublished data Case-control study evaluating PCV13 effectiveness among US Medicare beneficiaries 65 year or older by vaccine serotype group

	N discordant sets	Unadjusted model		Adjusted model*	
All IPD	320	14%	(-11, 33)	24%	(2, 41)
PCV13-type	62	30%	(-27, 62)	36%	(-18 <i>,</i> 65)
PCV13-type + 06C	71	44%	(0, 69)	47%	(4, 71)
PCV13-type+6C (no 3)	34	64%	(6, 86)	67%	(11, 88)
Туре 3	37	22%	(-64, 63)	26%	(-58 <i>,</i> 65)
Non-Vaccine types	103	4%	(-47, 37)	13%	(-36, 44)

*Adjusted for gender, presence of chronic and immunocompromising conditions

CDC's Active Bacterial Core Surveillance and CMS collaboration, unpublished data

PCV13 Effectiveness against ST3 IPD

Study	Population	Method	VE (95%CI)
CAPiTA [1, 2] *	Dutch adults ≥65 years old (n=84,496)	Post-hoc analysis (0 cases in PCV13 arm, 4 cases in control arm)	100% (-52, 100)

*Pfizer funded study

1.Bonten MJM, et al. NEJM. 2015

2. Gessner et al. In press

PCV13 effects on **pneumonia** caused by serotype 3

Pneumonia caused by serotype 3

- Limited studies available evaluating serotype-specific pneumonia burden and vaccine effectiveness
- No commercially available tests to detect pneumococcal serotypes causing non-bacteremic pneumonia
- Studies utilizing Pfizer-developed serotype-specific urine antigen test (SSUAD)

PCV13 Effectiveness against ST3 Pneumonia

Study	Population	Method	VE (95%CI)
CAPiTA [1, 2] *	Dutch adults ≥65 years	RCT (PCV13 vs placebo), 1 st episode	
	old (n=84,496)	Per protocol	56.3% (-12, 85)
		mITT	60.0% (5, 85)
		Post-hoc analysis, all clinical CAP, 1 st episode	61.5% (18, 83)
Louisville cohort study [3]*	U.S. adults ≥65 years old	Nested test negative design case- control; non-PCV13-type pneumonia as controls (n=2,034)	52.8% (-100, 89)
*Pfizer funded study 1.Bonten MJM, et al. <i>l</i>	NEJM. 2015		

2. Gessner et al. In press

3.McLaughlin JM, et al. Clin Infect Dis. 2019

Population-level impact on ST3 pneumonia Pfizer-supported Louisville Pneumonia Study

	Year 1	Year 2	Absolute	% Relative
	Jun 2014 – May 2015	Jun 2015 – May 2016	Difference	Reduction
	Incidence Rate per 100,000 pe	r year (95% Confidence Interva	al*)	
≥65y All	PCV13 coverage, May 2015 ⁺ = 11.1%	PCV13 coverage, May 2016 ⁺ = 35.6%		
All-cause CAP	2412 (2317, 2511)	2080 (1992, 2172)	332	13.8 (8.5, 18.7)
PCV13-type CAP	112 (93 <i>,</i> 135)	76 (61 <i>,</i> 96)	36	31.5 (8.3 <i>,</i> 48.9)

*95% confidence interval is based on Poisson distribution.

[†]Uptake estimates are specific to Louisville (Jefferson County) Kentucky and were based on IQVIA administrative claims (numerator) and US Census data (denominator). CAP=community-acquired pneumonia; PCV13=13-valent pneumococcal conjugate vaccine; SSUAD=PCV13 serotype-specific urinary antigen detection assay.

¹ Swerdlow et al June 2018 ACIP pneumococcal session presentation

Population-level impact on ST3 pneumonia Pfizer-supported Louisville Pneumonia Study

	Year 1 Jun 2014 – May 2015	Year 2 Jun 2015 – May 2016	Absolute Difference	% Relative Reduction	
	Incidence Rate per 100,000 pe	er year (95% Confidence Interva	al*)		
≥65y All	PCV13 coverage, May 2015 ⁺ = 11.1%	PCV13 coverage, May 2016⁺ = 35.6%			
All-cause CAP	2412 (2317, 2511)	2080 (1992, 2172)	-332	13.8 (8.5, 18.7)	
PCV13-type CAP	112 (93, 135)	76 (61, 96)	-36	31.5 (8.3, 48.9)	
	Oct 2014-Sep 2015	Oct 2015-Sep 2016			
% of CAP Caused by ST3 ²	0.78%	1.26%			
Incidence Rate per 100,000 per year					
ST3 CAP ³	18.8	26.2	+7.4		

*95% confidence interval is based on Poisson distribution.

[†]Uptake estimates are specific to Louisville (Jefferson County) Kentucky and were based on IQVIA administrative claims (numerator) and US Census data (denominator). CAP=community-acquired pneumonia; PCV13=13-valent pneumococcal conjugate vaccine; SSUAD=PCV13 serotype-specific urinary antigen detection assay.

¹ Swerdlow et al June 2018 ACIP pneumococcal session presentation

² Courtesy of Pfizer, unpublished data

³ Estimated by applying %ST3 to all-cause CAP incidence

Population-level impact on ST3 pneumonia Pfizer-supported Louisville Pneumonia Study

	Year 1 Jun 2014 – May 2015	Year 2 Jun 2015 – May 2016	Absolute Difference	% Relative Reduction				
	Incidence Rate per 100,000 pe	er year (95% Confidence Interva	al*)	Reddetion				
≥65y All	PCV13 coverage, May 2015 ⁺ = 11.1%	PCV13 coverage, May 2016 ⁺ = 35.6%	,					
All-cause CAP	2412 (2317, 2511)	2080 (1992 <i>,</i> 2172)	-332	13.8 (8.5 <i>,</i> 18.7)				
PCV13-type CAP	112 (93 <i>,</i> 135)	76 (61 <i>,</i> 96)	-36	31.5 (8.3 <i>,</i> 48.9)				
	Oct 2014-Sep 2015	Oct 2015-Sep 2016						
% of CAP Caused by ST3 ²	0.78%	1.26%						
	Incidence Rate pe	r 100,000 per year						
ST3 CAP ³	18.8	26.2	+7.4					
Expected incidence through direct effects in 2016 = (Incidence at baseline) x (VE) x (Coverage)								
= 18	3.8 x 61.5% (VE) x 35.6% (Covera	ge) ≈ 14.7	= 18.8 x 61.5% (VE) x 35.6% (Coverage) ≈ 14.7					

¹ Swerdlow et al June 2018 ACIP pneumococcal session presentation

² Courtesy of Pfizer, unpublished data

³ Estimated by applying %ST3 to all-cause CAP incidence

Summary

In children

- PCV13 effectiveness against ST3 IPD:
 - Inconsistent findings with most studies showing no effectiveness
 - Duration of protection likely short (EU network study)
 - VE higher for toddler doses (US vs UK, Germany)
- No population-level impact on ST3 IPD demonstrated in the US and countries using PCV13

Summary

In adults

- PCV13 effectiveness against ST3 IPD in adults:
 - Non-statistically significant VE in CAPiTA post-hoc analysis (not powered)
 - Low (and not significant) effectiveness in one case-control study
- No population-level impact on ST3 IPD demonstrated in the US and countries using PCV13 among adults (indirect or direct)
- PCV13 effectiveness against ST3 pneumonia in adults:
 - Moderate (not significant) effectiveness against ST3 CAP among adults in 2 Pfizer supported studies (CAPiTA and Louisville TND)
 - Effectiveness demonstrated in a post-hoc and mITT analysis of CAPiTA
- Limited data on population-level impact on ST3 pneumonia; no evidence of impact in one cohort study by 2016 (~36% coverage)

Conclusions

- PCV13 may provide some level of direct protection against IPD and pneumonia caused by serotype 3
 - Inconsistent findings across studies and populations
 - Effectiveness is lower as compared to other PCV13-types (IPD)
- Given VE and PCV13 coverage to date (~40%), population-level impact is expected
- No evidence of population-level impact on type 3 disease to date
 - Limited duration of protection
 - No impact on carriage = continued circulation and exposure of susceptible individuals
- High-level of uncertainty remains on the expected benefits of PCV13 against type 3 disease
- Assumptions around inputs for VE vs ST3 disease for models estimating expected public health benefits from PCV13 use in adults should consider a range of values
 - No effectiveness (VE=0%) to account for studies with 95% CI for VE cross the null value
 - Point estimates for VE against ST3 IPD and pneumonia

Thank you!

Ryan Gierke, Wei Xing, Olivia Almendares, Nong Shang, Camelia Savulescu, Pekka Nuorti

Disclaimer: The findings and conclusions in this presentation are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention